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Microwave Filter Analysis Using a New 3-D
Finite-Element Modal Frequency Method

John R. BrauerFellow, IEEE,and Gary C. LizalekMember, IEEE

Abstract—A new finite element modal frequency method is desired for the filter, then the designer should not spend
presented and shown to be advantageous for the analysis of mi-any time computing the frequency response. Instead, the
crowave filters. The method analyzes a finite-element model of a geometry and/or materials can be changed to tune the resonant

filter by first computing the eigenmodes of the three-dimensional f ies to the desired val The final tati I st
(3-D) structure. The computed eigenvalues are shown to reliably requencies 1o the desired values. [he linal computational step

determine all of the resonant frequencies in a frequency range; Of the new method then quickly obtains the filtejparameters
the filter design can be changed until the desired resonant at a large number of frequencies.
frequencies are computed. Finally, the eigenvectors are used as This paper begins with the theory of the new method, start-
basis functions to compute the frequency response of the filter, jn4 \ith a review of real eigenvalue extraction. The authors
thereby achieving a speedup that increases with the number of X .
frequencies analyzed. Two filters analyzed in this paper show show howall of the modal eigenvectors in a freq_uency r.ange.
speedups ranging from 1.39 to 4.04, and their computeds- C€an be found and then used as orthogonal basis functions in
parameters agree closely with measurements. place of the usual finite-element shape functions. The authors
Index Terms—Eigenvalues/eigenfunctions, finite-element meth- then examine the cpmputauon Sfpgramete.rs of microwave
ods, microwave filters, resonator filters, scattering parameters. components, and find a few special requirements when the
modal frequency method is used. Finally, the authors show
results for typical microwave filters modeled with H1-curl
edge finite elements.
ICROWAVE filters are often made of electromagnetic

I. INTRODUCTION

resonators that are tuned and coupled to obtain the Il. ELECTROMAGNETIC FINITE ELEMENT
desired frequency response. The filter design process is highly MODAL FREQUENCY METHOD
dependent on accurate knowledge of the resonant frequencies
of the filter.

. . . . A. Comparison of Direct and Modal Methods
Finite elements are increasingly being used to analyze

microwave components in three dimensions, including filters The computing cost of dynamic structural finite-element
[1]-[4]. The S-parameters of a component are computed @palyss is often reduced by first computing structural resonant
solving a large finite-element matrix equation, where the righffldes. Structural engineers often perform dynamic analysis,
hand side (RHS) is an excitation at each one of its ports. TRElUding frequency response, transient response, and complex
matrix changes with each frequency, and thus the large maffigenvalue analysis, byodal method$4], [9] rather than by
equation must be solved anew at each frequency analyz&ect methods _
Hence, obtaining the frequency response of a filter with In direct methods, whether structural or electromagnetic,
many sharp resonances can entail computations at dozen&§r Piecewise (low-order polynomial) finite-element shape
hundreds of frequencies, which is very expensive. functions are used to describe the solution in the form of a
To save computer time in such finite-element computatiorldfge matrix equation with potentials or fields as the direct
several schemes for frequency interpolation have been u&nowns{u}.In modal analysis, basis functions representing
[5]. Recently, the asymptotic waveform evaluation (AWEEsonant _behavpr are used msteaq. In modal_ dy_namlcs the
method has gained favor. It is typically based on Taylor’ al solutlon_{u} is expressed as a Imear_ combination of t_he
series, recursion formulas, and Radpproximants [6], [7]. orthogonal eigenvectorsp; } found in real eigenvalue analysis
AWE has limitations, however, especially for filters with many m
resonances, and thus other methods such as #ad.anczos {u} = Z {d:}ai- 1)
[8] are now emerging. i=1

This paper describes a new finite-element method (FEM)yis anproach can have a tremendous advantage. Instead
that aids the design of microwave filters. It is called the eIeBT describing a three-dimensional (3-D) solution in terms of
tromagnetic finite-element modal frequency method becal ically 10000 or so direct degrees of freedom{im}, the
it is based upon first computing the resonant electromagnggution may now be often described by only a few dozen

modes. If the resonant frequencies do not correspond to th?r?&de amplitude degrees of freedam The disadvantage, of

. ) ) course, is that the 3-D resonant modes must first be computed.
Manuscript received October 16, 1996; revised December 13, 1996. 0 I th dal hod h ianifi d
The authors are with Ansoft Corporation, Milwaukee, WI 53223 USA. verall, the modal method can _ave a significant advantage
Publisher Item Identifier S 0018-9480(97)03101-3. in frequency response analyses in which a large number of
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frequencies are requested, or in transient analyses involvimglow \q. Estimates of this kind are extremely useful in finding
large numbers of time steps and/or time step size changesroots within selected intervals.
The modal transformation given in (1) can also be written In general, the evaluation of characteristic polynomials is
in matrix form as a difficult task. Fortunately, the decomposition in (4), which
must be performed in any event to implement the basic
{u} = [¢lq} (2) iteration algorithm, can also provide the necessary information.

where the matri{¢] is made up ofn columns of individual It can be shown that the characteristic polynomial of the
Orthogona| eigenvector$¢i}, and the Vector{q} contains Original matrix is related to the determinant of tb%ize

all of the coefficients of (1). If there are direct degrees submatrix of the factor diagonal matr[¥]

of freedom in a problem (the length of the column vector p

{u}), then[¢] is an @ x m) matrix. This transformation can (=1)p;(ho) = drdz -+~ dj = det [D;]. (6)
be highly accurate when ail eigenvectors of the system are
used. In many cases only a small approximation is introduced
if a limited number of eigenvectors in a specified frequend
range is used. The frequency range should include all mo
that are expected to respond during dynamic analysis.

From this, it follows that the number of roots belowy,
., the Sturm numbef(Ao), is simply equal to the number
ésnegative terms on the factor diagonal. Given the Sturm
numbers at two points), and X,, the number of roots in the
interval [\,, A\z] is just the difference between Sturm numbers.
Such information, which is readily available as a result of
the iteration process, allows the algorithm to easily track the
The eigenvectorg¢;} of (1) are found using Sturm se-number of roots within selected intervals.
quence techniques as follows. The eigenvalue problem to bgt sometimes happens that the basic iteration algorithm fails,
solved is for some reason, to find all of the roots within a selected
(K] = M[M]){di} =0 3) interval. When this occurs, a binary ;earch is conducted based
on Sturm numbers to isolate the missing roots. Assume for
where the matricegK| and [M] for electromagnetics arethe sake of discussion that only one root has been missed.
reluctance and permittance matrices, respectively [4], [10]he interval is bisected and the Sturm number at the mid-
The eigenvalues to be found are real numbgrsequaling point is computed. On the basis of this information, and the
the sguare of each resonant angular frequency. Note that elaciation of the roots already found, it is possible to decide
eigenvalue has a corresponding eigenvegtfyr}. which half of the interval contains the missing root. This
The solution of (3) is obtained here by the widely usegrocedure is continued until the missing root is isolated within
Lanczos algorithm [4]. It begins with an inverse power itera sufficiently small subinterval. It may then be extracted by
ation in which orthogonality conditions are imposed amoniteration.
the vectors produced by iteration. The normalization co-

efficients from the iteration are then used to construct @ Using the Modes to Obtain Frequency Response

tridiagonal matrix with the same eigenvalues as the original. .
Electromagnetic frequency response can be computed as

n igenval re extracted from the tridiagonal matrj . : N
O. ce elgenvalues are extrac ed fro e tridiagona ma Pc(ﬂlows. The equation for direct frequency analysis is given
eigenvectors are easily constructed through a second |teratt|)on

N y the usual finite-element matrix equation [4], [10]
and orthogonalization process.
The required decomposition of the initial symmetric positive 2001 + 4 _

L . . ) ) - + jw[C] + [K]}, ={P}. 7
definite matrix[K — Ao M|, where) is a shift value, provides = M)+ glCl+ KD} u} ={P} 0
an excellent opportunity for monitoring the iteration processor electromagneticg)M] is the permittance matrix (propor-
to assure that all roots are found within a specified frequengynal to permittivity), [C] is the conductance matrix (pro-
interval. Consider the initial decomposition portional to conductivity), andK] is the reluctance matrix

[K — MoM] = [LIF[D][L]. (4) (inversely proportional to per'meablllty). For the e_dge finite
o _ ~elements used hergu} consists of edge magnetic vector
Let p; () denote the characteristic polynomial of the Iead'nﬁotentialsjéf. From {u}, the magnetic fields are easily found

principal (j x j) submatrix of[ K" — AgM]. The roots of such p, 5 1| operation and the electric fields by multiplication by

a polynomial represent the eigenvalues of the submatrix. Tﬂ%«w_ { P} is the excitation vector. For microwaparameter
sequence of polynomial§po, p1, - -+, pn} is called a Sturm

o C computations{ P} is located at ports. Assuming a 3-D finite-
sequence. By Cauchys m_terlace theorem, itis _known that AR ment model of a microwave component with thousands of
roots_of the polynomials in such a sequence iaterlaced edge unknowns, the unknowfu} vector has thousands of
Consider the sequence of numbers generated by evaluaffgees of freedom. Note that the left-hand matrix changes
the characteristic polynomials at some shift valdg for it frequency and thus solution time is proportional to the
increasingly larger submatrices number of frequencies analyzed.

{pi(Xo),i=0,1,--+, n} (5) Instea(_j pf solving (7) directly, one can substitute (2) into

(3), obtaining

The number of sign agreements in this sequence is equal to
the number of roots (i.e., eigenvalues of the original matrix) —w?[M][¢]{q} + jw[C][#]{q} + [K][¢]{¢} = {P}. (8)

B. Finding All Resonant Modes in a Frequency Range
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a)
?isnsii:lgle solve direct compute
[ | matrices matr;{( t 5= ]
| |for design equation a params |
| one frequency | if necessary,
redesign and
! < | reanalyze
L repeat for all frequencies _:
___________________ _<._ _—
b) assemble solve for real solve compute
finite el. eigenvalues modal S—
[T|matrices — and —) eq. at arams .
| |for design eigenvectors all fre P | if necessary,
| q | redesign and
- - € —————— e _| reanalyze
c) :l_ss_emble solve for real restarf compute
inite el. eigenvalues & solve §—
[T| matrices —) and | modal [
. . params
| | for design eigenvectors | eq. at
L _, all freqs
_____________ -~

if necessary, redesign and reanalyze

Fig. 1. Basic schematics and relative computer times for alternative design/analysis FEM's. Block widths are roughly proportional to typitad compu
times. (a) Direct frequency. (b) Modal frequency. (c) Modal frequency with restart.

Premultiplying both sides of (8) bj]?" obtains of the vector{q} is usually much smaller than the size of the

2t AT LT original unknown vecto{«}, the solution of (10) is usually
—w (9" [M][¢Ha} + jwld]” [Cllel e} inexpensive. Thus, it can be efficiently accomplished at a large

+ [ [K[¢l{a} = [¢" {P} (9) number of frequencies.

When the effects of conductivity are very large, the modes
computed using real eigenvalue analysis may not adequately
(=w?[m] + jwlc] + [kD{q} = {p} (10) span the solution space. In such cases, the finite-element
software must use a large number of eigenvectors or must
resort to direct solution methods. However, most microwave

which can be rewritten as thmodal frequency equation

where the three newnodal matrices are

[m] = []7 [M][4] filters have low losses and thus the modal frequency method
] = [¢I7[C1[e] is applicable. It is especially attractive for filters because their

T resonant frequencies should usually be checked first by real
(k] =[¢]" [K][¢] (11) eigenvalue analysis, and thus the eigenvecia3 of (1) and

(3) are already computed and saved on a database.

The proposed modal frequency method for microwave de-
{p} = [p]*{P}. (12) vices is compared with the direct frequency method in Fig. 1.
Fig. 1(a) shows that if many frequencies must be analyzed
th the direct method, then its computer time is essentially
symmetric matrices andi{ — AoM] is positive definite, then proportional to the number of frequencies. Fig. 1(b) shows that

the ei ; tri h " h that (10 eigenvalue analysis is the most expensive part of the modal
beecoer:'?:smﬁ(l:]or matrice] have properties suc at ( )frequency method, and thus its total computer time is almost

unaffected as the number of frequencies analyzed is increased.
—w?[mal{q} + jw[c{q} + [ka]{q} = {p} (13) Fig. 1(c) shovx_/s that if eigenvalues _(resonant _frequencies) are
S _ _ of interest as in the case of most microwave filters, then often
where the subscripf indicates a diagonal matrix. Now ft] the best design method is to make any design changes after
can be shown to be diagonal, then (13) reduces to a triviggenvalue analysis, redesign until the desired eigenvalues are
uncoupledmatrix equation, where each unknowncan be optained, and finally restart to obtain tifeparameters versus
solved independently by the scalar equation frequency. This design procedure could be used inside a circuit
(—w?m; + jwei + ki) g = pi. (14) optimization algorithm, and the speed gal_ne_d by the modal
frequency method would speed up the optimization.

and the modal right-hand excitation vector is

The solution of (10) may become trivial under certai
cases. If the[M] and [K]| matrices in (7) are any real

Obviously, if the conductance matri)C] is zero, then the
uncoupled solution (14) may be used.
The coupled solution (10) for allossy electromagnetic IIl.~ S-PARAMETER COMPUTATION METHOD
devices will be used, because they either have nonggfo = The major requirement for using the new modal frequency
or complex[M] or [K] matrices. However, because the sizeesponse method for microwave filters is that it obtain accurate
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S-parameters and the associated 3-D electromagnetic fieldsnce, one obtains the expression for fiparameters

To do so, some modifications must be made to the usual

S-parameter computation procedures. 1
S-parameters can be computed as follows whether or not [Sll 512} _ [bll bl?} [all al?} ) (25)

ports are matched [2]. The fields near a port of a microwave S12 S22 bar ba2 | |ag1 a2

circuit can be expressed by

E(z,y, z,t) = E-(z, y)e 7% 4+ E.(z, y)e 7 e THd5) A similar relation applies to a.multimod_N—port circuit.

= _ e Ajwta e tiw The aboveS-parameter equations require that accuidte

H(z,y, 2, t) = He(w, y)e e + Ho(z, y)e e ™18 g H, are used in (21). Thus, accurate tangent fields at the

wherer indicates the transverse components (in the plane Rfi"s are needed. _ o

a port) andz indicates the longitudinal (normal) component. Obtaining accurate tangent fields at the ports is dl_fflcult in
In order to computeS-parameters, the transverse comp&-he qual frequency.method, because t_he 3-D real eigenvalue

nents must be known. They can be expressed in termsaG@lysis assumes either perfect electric conductgr (PEC) or

forward-traveling waves: and backward traveling waves perfect magnetic conductor (PMC) boundary conditions at the

without loss of generality (where the sign of thevaves is ports (and on all other outer boundaries). PEC conditions cause
FE_ to be zero, while PMC conditions caugé- to be zero.

g:?:ggg;;or £ and # fields so that power flows in the PTOPE\either condition is correct at excited ports.
While other techniques to resolve the port boundary con-
(E)T =(ae™* + bet)E(z, y) (17) dition problem are under investigation, in this paper one has
N vz FvanT assumed PMC boundary conditions at the port terminations
(H)r = (ac™ = b ) (@, y). (18) during the 3-D eigenvalue analysis, but has shifted the port
Note that the transverse components can be represerig@dghinations outwards from their original locations by mesh
by a complex amplitude and the real transverse eigenvectension. TheS-parameter computations usé. and H-
modal fields and & computed using an analysis of theevaluated at the original (unshifted) port locations, is
modal fields at a port (e.g., a waveguide ;§Enode, etc.). computed with much greater accuracy because of the shift
In general, both transverse and longitudinal components darthe PMC port boundary condition, and hence (21) and (25)
exist, but on|y the transverse components are needeﬁ_forObtain more accuratg§-parameters. In the software used here
parameter computation. The transverse modal port vector fi€l&l. the evaluation ofZ; and H is automatically carried out
of a lossless port can be represented by a pure real vedtgee to five finite-element layers away from the port PMC
field without loss of generality or phase information. Henceoundary whenever the modal frequency method is used. Note

(17) and (18) can be rewritten as that the same mesh with extended terminations is used for both
steps of the modal frequency solution.
E.&(x, y) = (ac™7* + bet7%)E(z, y) (19)  The real 3-D eigenvalue analysis must also have proper
H.h(z, y) =(ac™" — bet )R (3, y) (20) boundary conditions on all electrically conductive walls. If

_ _ ) they are PEC’s, then the tangent componentfbfs set to
where E- and H. are unitless factors. Finally, adding andero and the proper eigenvalues and eigenvectors are found.

subtracting (19) and (20) gives However, 2-D conducting finite elements that model resistive
E, +H. wall losses in direct frequency analysis [10] require that
=T 5 tangentF be unconstrained, and thus cannot be used in modal
E, —H. frequency analysis. Instead, one could estimate such wall
b= 5 (21) |osses using perturbation theory.

Assuming a two port microwave circuit for clarity, two
evaluations are required. One has its excitation at port one
and the other has its excitation at port two. For rport, IV. EXAMPLES

this pattern continues until alNV' ports have been excited The modal frequency solution method is applied in this
individually for each mode of interest, thereby generatingection to the analysis of two low loss microwave filters.
mU|t|p|e matrix equatlonS. Th§-parameter matrix equat|0nSThe method has been imp'emented [12] such that Computed

for the two port are eigenvectors are stored on a database and are available via
restart techniques for modal frequency solutions at any desired
] =lg gl ] 22) frequencies
b g g The two filters analyzed here have also been analyzed by
{bm} = {Sll 512} {“12} (23) the direct frequency FEM [13]. They are types of dielectric
22 12 022 || %22 resonator filters that use evanescent waves to couple to two
Combining them gives external ports. While design iterations will not be discussed
for these example filters, the software also includes fully pa-
{511 512} [“11 “12} - {bll bl?} (24) rameterized solid geometry and meshing to aid the evaluation
Si2 Saa|lan ap bar b2z of multiple design alternatives.
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Fig. 3. |S21]| for rectangular filter of Fig. 2. Curves are computed by direct
and modal methods, while data points are measurements.

TABLE |
CoMPUTER TIMES (SECONDY TO COMPUTE S-PARAMETERS
FOR GIVEN DESIGN OF RECTANGULAR FILTER OF FiG. 1

dielectric
resonator

Number of RIRECT METHOD MODAL METHQD Speedup

frequencies Solving matrix ¢q Total Solving matrix eq. Total (Total)
51 361 531 13 381 1.39

(b) 101 718 928 25 439 21

Fig. 2. Filter with rectangular dielectric block that fills metal walled wave-
guide. (a) Dimensions in mm (26.4 has been tuned3y6% from measured
length). (b) finite-element model of one-half.

The model includes the dielectric loss tangent okZ0~*
A. Cutoff-Coupled Rectangular Dielectric in the dielectric filled sections, which causes both matrices
Resonator Waveguide Filter [M] in (7) and [m] in (10) to become complex. The 3-D
fiPite elements are all H1-curl edge hexahedrons. Including

Fig. 2(a) shows a bandpass filter made of a length : .
rectangular metal walled waveguide. It is filled with a gl shifted ports for the modal solution, the model has 3738

electric material at its two ports and at a central resonat%'lre.Ct (edge) degrees of fre_ed_om. -
Fig. 3 shows the transmission coefficiefff;;| near the

section. Between the dielectric filled sections are two air filled .
[gsonant frequency of 3.10 GHz. Measured data points are

sections. The air filled sections contain evanescent wave licated at ¢ . Al h ]
while the dielectric sections have a relative permittivity ofdicated at seven lrequencies. AISo shown aré o curves

ten and contain propagating JlEwaves. The lengths of the computed at 51 frequencies over the range from 3.08 to 3.13

two adjacent air sections determine the coupling and load@iZ- The computed curves include the dielectric loss but not

quality factorQ; of the filter, much as the size of couplingwa" loss, which can be shown to be small compared to the

holes in the metal walls of an ordinary resonant cavity filtgdielectric loss [13], [14]. Unfortunately, the experimental filter
determine itsQ.. was discarded many years ago, and no measurements of its

The resonant frequency of the filter is related to the lengtRflection coefficients,, are available. _
d of the dielectric resonator, which here is 26.1 mm. The The two curves of Fig. 3 were obtained by direct frequency

theoretical equation satisfied at resonance is [14] and modal frequency methods for comparison. Note that the
agreement is excellent, especially near resonance. Moreover,

Bd + arctan <22L/32> =pr (26) Table | shows that the new modal frequency method offers a

a?—f substantial time advantage over the customary direct method

whereq is the attenuation constant in the evanescent sectiofging sparse decomposition. The computer time speedup of
and g is the propagation constant in the propagating sectiods39 for 51 frequencies is increased to 2.11 when 101 fre-
The RHS has the integes, which is here assumed to bequencies are analyzed; the speedup will continue to increase
one. For the waveguide shown in Fig. 2(a), (26) is obeyadth the number of frequencies analyzed. All times in Table |
at approximately 3.1 GHz (whem = 105/m and3 = 164/m). are for a Hewlett-Packard 735/125 workstation.

Fig. 2(b) shows the finite-element model developed for the The modal results of Table | were obtained using 50 modes.
filter of Fig. 2(a). Due to symmetry of the 254 12.7 mm Fewer modes were found to yield greater speedups at some
waveguide, only a half model (124 12.7 mm) was analyzed. sacrifice of accuracy at frequencies above 3.13 GHz. The
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Fig. 4. Electric field computed by modal frequency method for rectangular

filter of Fig. 2 at 3.10 GHz. ! o
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s Fig. 6. Filter with two dielectric cylinders in a cutoff waveguide fed by two
: :E; coaxial cables serving as ports 1 and 2. (a) Translucent 3-D view of solid
i geometry and (b) dimensions in mm and materials.
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Fig. 5. Electric fields computed by direct frequency method for rectangular f \_ /.-“/ 5 “
filter of Fig. 2. (a) at resonant frequency of 3.10 GHz and (b) 3.13 GHz —50 ] { \\\4/-""” ‘{{
(maximum field is now reduced by a factor of 50). H
60 ‘g
0 |

modes used are the 50 modes with the lowest frequencies

above 0.1 GHz. Modes near zero frequency should be excluded

due to zero frequency spurious modes of edge elements @&rd7. MeasuredsS,| of cylindrical filter of Fig. 6.

breakdown of the Lanczos decomposition. The modes used for

Table | had frequencies ranging from 1.97 to 7.16 GHz; the

sixth mode is at 3.10 GHz. Fig. 5(a) shows the electric field computed by the direct
Fig. 4 shows the electric field computed by the modahethod at 3.10 GHz, which is very similar to that of Fig. 4.

method at 3.10 GHz. This shows strong resonance in tfiee maximum electric field is altered slightly to 19732 V/m,

rectangular dielectric block. The maximum electric field iand total electric energy is now 30.974 J. Therefore the

19739 V/m, and total electric energy (the volume integral ehaximum £ has been changed by0.035%, and the average

E - D/2) is 30.972 J. E has been changed by0.0032%.

4 GHz 6 GHz f 8 GHz
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Fig. 8. Finite-element model of one-half of cylindrical filter of Fig. 6, consisting of 3503 tetrahedrons.

Fig. 5(b) shows the electric field computed at 3.13 GHz sy,
(away from resonance). Note that the field is rapidly attenuated
from its input at the left port and is now much smaller in the B
resonator section.

0 =

_20
B. Coax Fed Cylindrical Dielectric Resonator Filter w0
Fig. 6(a) shows a filter design with two cylindrical dielectric
resonators. It is similar to filters designed for remote sensing 6
satellites [13]. It has two coaxial cables acting as ports, and is ~ ] .
designed to perform as a bandstop filter from 5 to 6.8 GHz. 1 direct
Fig. 6(b) shows the dimensions and materials of the filter. The —80 -
two dielectric cylinders have a relative permittivity of 38. The ;
rectangular waveguide connecting the two ports is operated in_;o5 1.

its evanescent Tlg mode. 4 45 5 85 6 65 7 75 8
Fig. 7 shows the measured transmission coefficiéht | f(GHz)
over the frequency range from 4 to 8 GHz. Note the resonance (b)

at 4.5 GHz and additional resonances at frequencies betwgfen
7 and 8 GHz. The peak near 6.6 GHz, however, appears ©
be too short to be a true resonance. Measurements of return
loss .Sy, are unavailable. However, since this two port filter i
assumed lossless and reciprod&l,;| can be obtained from
the relation that the sum of the squares|6f;| and |S|
must equal one.

Fig. 8 shows the finite-element model developed for t
filter, which again is a half model due to symmetry. The 3-
finite elements are all H1-curl edge tetrahedrons. The mo

haé_a tc;)tarll of 2:1 190 dlrec: (élgegrees of freg?qm.d by direct Table 1l shows once again that the new modal method
i0. 9 shows two computed, | curves, obtained by direc offers a substantial time advantage over the customary direct

and modal methods for comparison. Note that the wo CUNVERthod. The speedup of 2.17 for 41 frequencies is increased

agree closely with each other, especially near.the two r?son?d“hm when 81 frequencies are analyzed. Because this filter
Ee?,f' Far avx;ay from Fthedreslonarzlces soclnéne_:rﬂlscr_epanmets e?é'?&ssless, the modal matrix equation setup and solution times
utthese are for magnitudes 1ess - 1€ EIGENVECIOT 5 6 even faster than for the lossy filter of Table I, and thus,

basis functions used in the modal .method evidently Ccause It s at additional frequencies are obtained with no additional
to lose some accuracy at frequencies far away from reson Banuter time
l .

frequencies. The modal results were obtained using all mode
computed from 4.0 to 8.0 GHz. Over this range 12 modes,
ranging from 4.06 to 7.96 GHz, were obtained. Fig. 10 shows
the modal fields computed at 4.51 and 7.02 GHz. A new method has been derived that speeds up the analysis
The curves in Fig. 9 agree well with the measurements ahd design of microwave filters. Called the finite-element
Fig. 7 except in three ways. First, neither computed curveodal frequency method, it first uses the Sturm sequenced
contains a resonant peak near the short peak measured heaczos method to reliably compuadl of the real 3-D modes

9. |S21| computed for cylindrical filter of Fig. 6 at 81 frequencies.

$.6 GHz, which may, therefore, be a measurement artifact.

Second, magnitudes below abeu60 dB show disagreement;

the cause has not been researched but may be due to noise

floors on both calculations and measurements. Third, at the
ghest frequencies (near 8 GHz) there is evidently some

refquency shift error in the computations due to the decrease
the number of finite elements per wavelength.

V. CONCLUSION
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(b)
Fig. 10. Computed modal fields for cylindrical filter. (a) Mode 3 at 4.51 GHz. (b) Mode 7 at 7.02 GHz.
TABLE I Wolfgang Langer of Siemens Corp., Hoffmannstrasse facility,
CoMPUTER TIMES (SECONDS TO COMPUTE 5-PARAMETERS Munich, Germany, for his measurements on the cylindrical

FOR GIVEN DESIGN OF CYLINDRICAL FILTER OF FIG. 6

dielectric filter.

Number of DIRECT METHOD MODAL METHOD Speedup

frequencics Solving matrix eq. Total Solving matrix ¢q Total (Total)
41 1542 1819 <0.1 840 217
81 3085 339 <0.1 840 4.04 [l]

[2]
of a filter trial design over the frequency range of interest.
The 3-D modes are then used in matrix equations to quickligl
obtain theS-parameters of the filter. [4]

Computations with the new method on two typical low
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