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Microwave Filter Analysis Using a New 3-D
Finite-Element Modal Frequency Method
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Abstract—A new finite element modal frequency method is
presented and shown to be advantageous for the analysis of mi-
crowave filters. The method analyzes a finite-element model of a
filter by first computing the eigenmodes of the three-dimensional
(3-D) structure. The computed eigenvalues are shown to reliably
determine all of the resonant frequencies in a frequency range;
the filter design can be changed until the desired resonant
frequencies are computed. Finally, the eigenvectors are used as
basis functions to compute the frequency response of the filter,
thereby achieving a speedup that increases with the number of
frequencies analyzed. Two filters analyzed in this paper show
speedups ranging from 1.39 to 4.04, and their computedS-
parameters agree closely with measurements.

Index Terms—Eigenvalues/eigenfunctions, finite-element meth-
ods, microwave filters, resonator filters, scattering parameters.

I. INTRODUCTION

M ICROWAVE filters are often made of electromagnetic
resonators that are tuned and coupled to obtain the

desired frequency response. The filter design process is highly
dependent on accurate knowledge of the resonant frequencies
of the filter.

Finite elements are increasingly being used to analyze
microwave components in three dimensions, including filters
[1]–[4]. The -parameters of a component are computed by
solving a large finite-element matrix equation, where the right-
hand side (RHS) is an excitation at each one of its ports. The
matrix changes with each frequency, and thus the large matrix
equation must be solved anew at each frequency analyzed.
Hence, obtaining the frequency response of a filter with
many sharp resonances can entail computations at dozens or
hundreds of frequencies, which is very expensive.

To save computer time in such finite-element computations,
several schemes for frequency interpolation have been used
[5]. Recently, the asymptotic waveform evaluation (AWE)
method has gained favor. It is typically based on Taylor’s
series, recursion formulas, and Padé approximants [6], [7].
AWE has limitations, however, especially for filters with many
resonances, and thus other methods such as Padé via Lanczos
[8] are now emerging.

This paper describes a new finite-element method (FEM)
that aids the design of microwave filters. It is called the elec-
tromagnetic finite-element modal frequency method because
it is based upon first computing the resonant electromagnetic
modes. If the resonant frequencies do not correspond to those
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desired for the filter, then the designer should not spend
any time computing the frequency response. Instead, the
geometry and/or materials can be changed to tune the resonant
frequencies to the desired values. The final computational step
of the new method then quickly obtains the filter-parameters
at a large number of frequencies.

This paper begins with the theory of the new method, start-
ing with a review of real eigenvalue extraction. The authors
show howall of the modal eigenvectors in a frequency range
can be found and then used as orthogonal basis functions in
place of the usual finite-element shape functions. The authors
then examine the computation of-parameters of microwave
components, and find a few special requirements when the
modal frequency method is used. Finally, the authors show
results for typical microwave filters modeled with H1-curl
edge finite elements.

II. ELECTROMAGNETIC FINITE ELEMENT

MODAL FREQUENCY METHOD

A. Comparison of Direct and Modal Methods

The computing cost of dynamic structural finite-element
analysis is often reduced by first computing structural resonant
modes. Structural engineers often perform dynamic analysis,
including frequency response, transient response, and complex
eigenvalue analysis, bymodal methods[4], [9] rather than by
direct methods.

In direct methods, whether structural or electromagnetic,
the piecewise (low-order polynomial) finite-element shape
functions are used to describe the solution in the form of a
large matrix equation with potentials or fields as the direct
unknowns . In modal analysis, basis functions representing
resonant behavior are used instead. In modal dynamics the
final solution is expressed as a linear combination of the
orthogonal eigenvectors found in real eigenvalue analysis

(1)

This approach can have a tremendous advantage. Instead
of describing a three-dimensional (3-D) solution in terms of
typically 10 000 or so direct degrees of freedom in , the
solution may now be often described by only a few dozen
mode amplitude degrees of freedom. The disadvantage, of
course, is that the 3-D resonant modes must first be computed.
Overall, the modal method can have a significant advantage
in frequency response analyses in which a large number of
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frequencies are requested, or in transient analyses involving
large numbers of time steps and/or time step size changes.

The modal transformation given in (1) can also be written
in matrix form as

(2)

where the matrix is made up of columns of individual
orthogonal eigenvectors , and the vector contains
all of the coefficients of (1). If there are direct degrees
of freedom in a problem (the length of the column vector

), then is an ( ) matrix. This transformation can
be highly accurate when all eigenvectors of the system are
used. In many cases only a small approximation is introduced
if a limited number of eigenvectors in a specified frequency
range is used. The frequency range should include all modes
that are expected to respond during dynamic analysis.

B. Finding All Resonant Modes in a Frequency Range

The eigenvectors of (1) are found using Sturm se-
quence techniques as follows. The eigenvalue problem to be
solved is

(3)

where the matrices and for electromagnetics are
reluctance and permittance matrices, respectively [4], [10].
The eigenvalues to be found are real numbersequaling
the square of each resonant angular frequency. Note that each
eigenvalue has a corresponding eigenvector .

The solution of (3) is obtained here by the widely used
Lanczos algorithm [4]. It begins with an inverse power iter-
ation in which orthogonality conditions are imposed among
the vectors produced by iteration. The normalization co-
efficients from the iteration are then used to construct a
tridiagonal matrix with the same eigenvalues as the original.
Once eigenvalues are extracted from the tridiagonal matrix,
eigenvectors are easily constructed through a second iteration
and orthogonalization process.

The required decomposition of the initial symmetric positive
definite matrix , where is a shift value, provides
an excellent opportunity for monitoring the iteration process
to assure that all roots are found within a specified frequency
interval. Consider the initial decomposition

(4)

Let denote the characteristic polynomial of the leading
principal ( ) submatrix of . The roots of such
a polynomial represent the eigenvalues of the submatrix. The
sequence of polynomials is called a Sturm
sequence. By Cauchy’s interlace theorem, it is known that the
roots of the polynomials in such a sequence areinterlaced.
Consider the sequence of numbers generated by evaluating
the characteristic polynomials at some shift value for
increasingly larger submatrices

(5)

The number of sign agreements in this sequence is equal to
the number of roots (i.e., eigenvalues of the original matrix)

below . Estimates of this kind are extremely useful in finding
roots within selected intervals.

In general, the evaluation of characteristic polynomials is
a difficult task. Fortunately, the decomposition in (4), which
must be performed in any event to implement the basic
iteration algorithm, can also provide the necessary information.
It can be shown that the characteristic polynomial of the
original matrix is related to the determinant of the-size
submatrix of the factor diagonal matrix

(6)

From this, it follows that the number of roots below,
i.e., the Sturm number , is simply equal to the number
of negative terms on the factor diagonal. Given the Sturm
numbers at two points, and , the number of roots in the
interval [ ] is just the difference between Sturm numbers.
Such information, which is readily available as a result of
the iteration process, allows the algorithm to easily track the
number of roots within selected intervals.

It sometimes happens that the basic iteration algorithm fails,
for some reason, to find all of the roots within a selected
interval. When this occurs, a binary search is conducted based
on Sturm numbers to isolate the missing roots. Assume for
the sake of discussion that only one root has been missed.
The interval is bisected and the Sturm number at the mid-
point is computed. On the basis of this information, and the
location of the roots already found, it is possible to decide
which half of the interval contains the missing root. This
procedure is continued until the missing root is isolated within
a sufficiently small subinterval. It may then be extracted by
iteration.

C. Using the Modes to Obtain Frequency Response

Electromagnetic frequency response can be computed as
follows. The equation for direct frequency analysis is given
by the usual finite-element matrix equation [4], [10]

(7)

For electromagnetics, is the permittance matrix (propor-
tional to permittivity), is the conductance matrix (pro-
portional to conductivity), and is the reluctance matrix
(inversely proportional to permeability). For the edge finite
elements used here, consists of edge magnetic vector

potentials . From , the magnetic fields are easily found
by a curl operation and the electric fields by multiplication by

. is the excitation vector. For microwave-parameter
computations, is located at ports. Assuming a 3-D finite-
element model of a microwave component with thousands of
edge unknowns, the unknown vector has thousands of
degrees of freedom. Note that the left-hand matrix changes
with frequency and thus solution time is proportional to the
number of frequencies analyzed.

Instead of solving (7) directly, one can substitute (2) into
(3), obtaining

(8)
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Fig. 1. Basic schematics and relative computer times for alternative design/analysis FEM’s. Block widths are roughly proportional to typical computer
times. (a) Direct frequency. (b) Modal frequency. (c) Modal frequency with restart.

Premultiplying both sides of (8) by obtains

(9)

which can be rewritten as themodal frequency equation

(10)

where the three newmodal matrices are

(11)

and the modal right-hand excitation vector is

(12)

The solution of (10) may become trivial under certain
cases. If the and matrices in (7) are any real
symmetric matrices and [ ] is positive definite, then
the eigenvector matrices have properties such that (10)
becomes [11]

(13)

where the subscript indicates a diagonal matrix. Now if
can be shown to be diagonal, then (13) reduces to a trivial
uncoupledmatrix equation, where each unknowncan be
solved independently by the scalar equation

(14)

Obviously, if the conductance matrix is zero, then the
uncoupled solution (14) may be used.

The coupled solution (10) for alllossy electromagnetic
devices will be used, because they either have nonzero
or complex or matrices. However, because the size

of the vector is usually much smaller than the size of the
original unknown vector , the solution of (10) is usually
inexpensive. Thus, it can be efficiently accomplished at a large
number of frequencies.

When the effects of conductivity are very large, the modes
computed using real eigenvalue analysis may not adequately
span the solution space. In such cases, the finite-element
software must use a large number of eigenvectors or must
resort to direct solution methods. However, most microwave
filters have low losses and thus the modal frequency method
is applicable. It is especially attractive for filters because their
resonant frequencies should usually be checked first by real
eigenvalue analysis, and thus the eigenvectors of (1) and
(3) are already computed and saved on a database.

The proposed modal frequency method for microwave de-
vices is compared with the direct frequency method in Fig. 1.
Fig. 1(a) shows that if many frequencies must be analyzed
in the direct method, then its computer time is essentially
proportional to the number of frequencies. Fig. 1(b) shows that
eigenvalue analysis is the most expensive part of the modal
frequency method, and thus its total computer time is almost
unaffected as the number of frequencies analyzed is increased.
Fig. 1(c) shows that if eigenvalues (resonant frequencies) are
of interest as in the case of most microwave filters, then often
the best design method is to make any design changes after
eigenvalue analysis, redesign until the desired eigenvalues are
obtained, and finally restart to obtain the-parameters versus
frequency. This design procedure could be used inside a circuit
optimization algorithm, and the speed gained by the modal
frequency method would speed up the optimization.

III. -PARAMETER COMPUTATION METHOD

The major requirement for using the new modal frequency
response method for microwave filters is that it obtain accurate
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-parameters and the associated 3-D electromagnetic fields.
To do so, some modifications must be made to the usual

-parameter computation procedures.
-parameters can be computed as follows whether or not

ports are matched [2]. The fields near a port of a microwave
circuit can be expressed by

(15)

(16)

where indicates the transverse components (in the plane of
a port) and indicates the longitudinal (normal) component.

In order to compute -parameters, the transverse compo-
nents must be known. They can be expressed in terms of
forward-traveling waves and backward traveling waves
without loss of generality (where the sign of thewaves is

different for and fields so that power flows in the proper
direction)

(17)

(18)

Note that the transverse components can be represented
by a complex amplitude and the real transverse eigenvector
modal fields and computed using an analysis of the
modal fields at a port (e.g., a waveguide TEmode, etc.).
In general, both transverse and longitudinal components can
exist, but only the transverse components are needed for-
parameter computation. The transverse modal port vector field
of a lossless port can be represented by a pure real vector
field without loss of generality or phase information. Hence
(17) and (18) can be rewritten as

(19)

(20)

where and are unitless factors. Finally, adding and
subtracting (19) and (20) gives

(21)

Assuming a two port microwave circuit for clarity, two
evaluations are required. One has its excitation at port one
and the other has its excitation at port two. For an-port,
this pattern continues until all ports have been excited
individually for each mode of interest, thereby generating
multiple matrix equations. The-parameter matrix equations
for the two port are

(22)

(23)

Combining them gives

(24)

Hence, one obtains the expression for the-parameters

(25)

A similar relation applies to a multimode -port circuit.
The above -parameter equations require that accurate

and are used in (21). Thus, accurate tangent fields at the
ports are needed.

Obtaining accurate tangent fields at the ports is difficult in
the modal frequency method, because the 3-D real eigenvalue
analysis assumes either perfect electric conductor (PEC) or
perfect magnetic conductor (PMC) boundary conditions at the
ports (and on all other outer boundaries). PEC conditions cause

to be zero, while PMC conditions cause to be zero.
Neither condition is correct at excited ports.

While other techniques to resolve the port boundary con-
dition problem are under investigation, in this paper one has
assumed PMC boundary conditions at the port terminations
during the 3-D eigenvalue analysis, but has shifted the port
terminations outwards from their original locations by mesh
extension. The -parameter computations use and
evaluated at the original (unshifted) port locations. is
computed with much greater accuracy because of the shift
in the PMC port boundary condition, and hence (21) and (25)
obtain more accurate-parameters. In the software used here
[12], the evaluation of and is automatically carried out
three to five finite-element layers away from the port PMC
boundary whenever the modal frequency method is used. Note
that the same mesh with extended terminations is used for both
steps of the modal frequency solution.

The real 3-D eigenvalue analysis must also have proper
boundary conditions on all electrically conductive walls. If
they are PEC’s, then the tangent component ofis set to
zero and the proper eigenvalues and eigenvectors are found.
However, 2-D conducting finite elements that model resistive
wall losses in direct frequency analysis [10] require that
tangent be unconstrained, and thus cannot be used in modal
frequency analysis. Instead, one could estimate such wall
losses using perturbation theory.

IV. EXAMPLES

The modal frequency solution method is applied in this
section to the analysis of two low loss microwave filters.
The method has been implemented [12] such that computed
eigenvectors are stored on a database and are available via
restart techniques for modal frequency solutions at any desired
frequencies.

The two filters analyzed here have also been analyzed by
the direct frequency FEM [13]. They are types of dielectric
resonator filters that use evanescent waves to couple to two
external ports. While design iterations will not be discussed
for these example filters, the software also includes fully pa-
rameterized solid geometry and meshing to aid the evaluation
of multiple design alternatives.
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(a)

(b)

Fig. 2. Filter with rectangular dielectric block that fills metal walled wave-
guide. (a) Dimensions in mm (26.4 has been tuned by+3.6% from measured
length). (b) finite-element model of one-half.

A. Cutoff-Coupled Rectangular Dielectric
Resonator Waveguide Filter

Fig. 2(a) shows a bandpass filter made of a length of
rectangular metal walled waveguide. It is filled with a di-
electric material at its two ports and at a central resonator
section. Between the dielectric filled sections are two air filled
sections. The air filled sections contain evanescent waves,
while the dielectric sections have a relative permittivity of
ten and contain propagating TEwaves. The lengths of the
two adjacent air sections determine the coupling and loaded
quality factor of the filter, much as the size of coupling
holes in the metal walls of an ordinary resonant cavity filter
determine its .

The resonant frequency of the filter is related to the length
of the dielectric resonator, which here is 26.1 mm. The

theoretical equation satisfied at resonance is [14]

(26)

where is the attenuation constant in the evanescent sections
and is the propagation constant in the propagating sections.
The RHS has the integer, which is here assumed to be
one. For the waveguide shown in Fig. 2(a), (26) is obeyed
at approximately 3.1 GHz (when /m and /m).

Fig. 2(b) shows the finite-element model developed for the
filter of Fig. 2(a). Due to symmetry of the 25.4 12.7 mm
waveguide, only a half model (12.7 12.7 mm) was analyzed.

Fig. 3. jS21j for rectangular filter of Fig. 2. Curves are computed by direct
and modal methods, while data points are measurements.

TABLE I
COMPUTER TIMES (SECONDS) TO COMPUTE S-PARAMETERS

FOR GIVEN DESIGN OF RECTANGULAR FILTER OF FIG. 1

The model includes the dielectric loss tangent of 710
in the dielectric filled sections, which causes both matrices

in (7) and in (10) to become complex. The 3-D
finite elements are all H1-curl edge hexahedrons. Including
the shifted ports for the modal solution, the model has 3738
direct (edge) degrees of freedom.

Fig. 3 shows the transmission coefficient near the
resonant frequency of 3.10 GHz. Measured data points are
indicated at seven frequencies. Also shown are two curves
computed at 51 frequencies over the range from 3.08 to 3.13
GHz. The computed curves include the dielectric loss but not
wall loss, which can be shown to be small compared to the
dielectric loss [13], [14]. Unfortunately, the experimental filter
was discarded many years ago, and no measurements of its
reflection coefficient are available.

The two curves of Fig. 3 were obtained by direct frequency
and modal frequency methods for comparison. Note that the
agreement is excellent, especially near resonance. Moreover,
Table I shows that the new modal frequency method offers a
substantial time advantage over the customary direct method
using sparse decomposition. The computer time speedup of
1.39 for 51 frequencies is increased to 2.11 when 101 fre-
quencies are analyzed; the speedup will continue to increase
with the number of frequencies analyzed. All times in Table I
are for a Hewlett-Packard 735/125 workstation.

The modal results of Table I were obtained using 50 modes.
Fewer modes were found to yield greater speedups at some
sacrifice of accuracy at frequencies above 3.13 GHz. The
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Fig. 4. Electric field computed by modal frequency method for rectangular
filter of Fig. 2 at 3.10 GHz.

(a)

(b)

Fig. 5. Electric fields computed by direct frequency method for rectangular
filter of Fig. 2. (a) at resonant frequency of 3.10 GHz and (b) 3.13 GHz
(maximum field is now reduced by a factor of 50).

modes used are the 50 modes with the lowest frequencies
above 0.1 GHz. Modes near zero frequency should be excluded
due to zero frequency spurious modes of edge elements and
breakdown of the Lanczos decomposition. The modes used for
Table I had frequencies ranging from 1.97 to 7.16 GHz; the
sixth mode is at 3.10 GHz.

Fig. 4 shows the electric field computed by the modal
method at 3.10 GHz. This shows strong resonance in the
rectangular dielectric block. The maximum electric field is
19 739 V/m, and total electric energy (the volume integral of

) is 30.972 J.

(a)

(b)

Fig. 6. Filter with two dielectric cylinders in a cutoff waveguide fed by two
coaxial cables serving as ports 1 and 2. (a) Translucent 3-D view of solid
geometry and (b) dimensions in mm and materials.

Fig. 7. MeasuredjS21j of cylindrical filter of Fig. 6.

Fig. 5(a) shows the electric field computed by the direct
method at 3.10 GHz, which is very similar to that of Fig. 4.
The maximum electric field is altered slightly to 19 732 V/m,
and total electric energy is now 30.974 J. Therefore the
maximum has been changed by0.035%, and the average

has been changed by0.0032%.
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Fig. 8. Finite-element model of one-half of cylindrical filter of Fig. 6, consisting of 3503 tetrahedrons.

Fig. 5(b) shows the electric field computed at 3.13 GHz
(away from resonance). Note that the field is rapidly attenuated
from its input at the left port and is now much smaller in the
resonator section.

B. Coax Fed Cylindrical Dielectric Resonator Filter

Fig. 6(a) shows a filter design with two cylindrical dielectric
resonators. It is similar to filters designed for remote sensing
satellites [13]. It has two coaxial cables acting as ports, and is
designed to perform as a bandstop filter from 5 to 6.8 GHz.
Fig. 6(b) shows the dimensions and materials of the filter. The
two dielectric cylinders have a relative permittivity of 38. The
rectangular waveguide connecting the two ports is operated in
its evanescent TE mode.

Fig. 7 shows the measured transmission coefficient
over the frequency range from 4 to 8 GHz. Note the resonance
at 4.5 GHz and additional resonances at frequencies between
7 and 8 GHz. The peak near 6.6 GHz, however, appears to
be too short to be a true resonance. Measurements of return
loss are unavailable. However, since this two port filter is
assumed lossless and reciprocal, can be obtained from
the relation that the sum of the squares of and
must equal one.

Fig. 8 shows the finite-element model developed for the
filter, which again is a half model due to symmetry. The 3-D
finite elements are all H1-curl edge tetrahedrons. The model
has a total of 24 190 direct degrees of freedom.

Fig. 9 shows two computed curves, obtained by direct
and modal methods for comparison. Note that the two curves
agree closely with each other, especially near the two resonant
peaks. Far away from the resonances some discrepancies exist,
but these are for magnitudes less than40 dB. The eigenvector
basis functions used in the modal method evidently cause it
to lose some accuracy at frequencies far away from resonant
frequencies. The modal results were obtained using all modes
computed from 4.0 to 8.0 GHz. Over this range 12 modes,
ranging from 4.06 to 7.96 GHz, were obtained. Fig. 10 shows
the modal fields computed at 4.51 and 7.02 GHz.

The curves in Fig. 9 agree well with the measurements of
Fig. 7 except in three ways. First, neither computed curve
contains a resonant peak near the short peak measured near

(b)

Fig. 9. jS21j computed for cylindrical filter of Fig. 6 at 81 frequencies.

6.6 GHz, which may, therefore, be a measurement artifact.
Second, magnitudes below about60 dB show disagreement;
the cause has not been researched but may be due to noise
floors on both calculations and measurements. Third, at the
highest frequencies (near 8 GHz) there is evidently some
frequency shift error in the computations due to the decrease
in the number of finite elements per wavelength.

Table II shows once again that the new modal method
offers a substantial time advantage over the customary direct
method. The speedup of 2.17 for 41 frequencies is increased
to 4.04 when 81 frequencies are analyzed. Because this filter
is lossless, the modal matrix equation setup and solution times
are even faster than for the lossy filter of Table I, and thus,
results at additional frequencies are obtained with no additional
computer time.

V. CONCLUSION

A new method has been derived that speeds up the analysis
and design of microwave filters. Called the finite-element
modal frequency method, it first uses the Sturm sequenced
Lanczos method to reliably computeall of the real 3-D modes
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(a)

(b)

Fig. 10. Computed modal fields for cylindrical filter. (a) Mode 3 at 4.51 GHz. (b) Mode 7 at 7.02 GHz.

TABLE II
COMPUTER TIMES (SECONDS) TO COMPUTE S-PARAMETERS

FOR GIVEN DESIGN OF CYLINDRICAL FILTER OF FIG. 6

of a filter trial design over the frequency range of interest.
The 3-D modes are then used in matrix equations to quickly
obtain the -parameters of the filter.

Computations with the new method on two typical low
loss bandpass and bandstop filters show good agreement with

-parameter measurements and with computations by the
conventional direct frequency FEM. The speedup in computer
time increases with increasing numbers of frequencies ana-
lyzed; for between 41 and 101 frequencies the speedup over
the direct FEM has been found to range from 1.39 to 4.04.
Future research in this promising new method will include
alternative boundary condition techniques for low loss and
high loss microwave problems.
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